

CB 2782-PEG: a Complement Factor C3-Inactivating Protease and Potential Long-Acting Treatment for Dry AMD

Complement-based Drug Development Summit 2019

November 15th 2019 Grant E. Blouse, PhD **VP** Translational Research

Age-Related Macular Degeneration (AMD)

- Wet and dry AMD are distinct diseases of which both lead to vision loss and blindness +
- Geographic atrophy (GA) results in progressive loss of photoreceptors and irreversible central vision loss +
- Unlike wet AMD, no marketed treatment is available for dry AMD +

C3 is the best validated target for GA in dry AMD

- + No currently approved therapies
- C3 is the best clinically validated target in GA
- + Apellis APL-2 (anti-C3 PEGylated peptide) completed P2

- Iveric Zimura (avacincaptad pegol) met primary endpoint +
- + Novartis LFG316 (IVT) failed primary endpoint
- + Alexion Soliris (IV) failed primary endpoint

- Sub-stoichiometric dosing and a catalytic mechanism +
- **Potential best-in-class anti-C3 therapeutic**
- + Q3mo or Q4mo dosing

Advanced dAMD, or geographic atrophy (GA), has a devastating impact on vision and leads to blindness

C5 targeting has shown 2 failures and 1 success in dAMD

Proteases provide superiority to peptides or antibodies

Catalytic inhibition is superior to stoichiometric inhibition

Catalytic Inhibition

1 protease inhibits 1000s of target molecules

Stoichiometric Inhibition

≥ 1000s binders inhibits 1000s of target molecules

Selection of a specific "inactivating" cleavage site Schematic of C3 structure and the C3 convertase cleavage site

- CB 2782 was engineered to specifically cleave a single site in C3 +
 - Divergent from that which is cleaved by the C3 convertases
- Cleavage of C3 results in an inactive C3a and C3b-related species +
 - Cannot be further activated by the C3 convertases

Molecular evolution of CB 2782 for C3-specific cleavage

CB 2782 shows high specificity

Cleavage of PentaXv2 Library

$$P_{4} P_{3} P_{2} P_{1} P_{1'} P_{2'}$$

$$A-G-G-G-Y-Y-Y-R + Y-Y-G-G-G- - K-K-NH_{2}$$

$$Any of 18 AAs (excluding R, C) # Peptides$$

$$N-terminal 7-methoxycoumarin-4-acetyl 1,889,568 (18^{5})$$

$$dinitrophenyl-diaminopropyl$$

- + Essentially no detectable cleavage of the PentaXv2 library by CB 2782
- + Near complete cleavage by MTSP-1
- + Complete cleavage by trypsin

Development Candidate CB 2782-PEG

CB 2782-PEG has indistinguishable activity vs CB 2782

CB 2782 and CB 2782-PEG inhibit complement-mediated hemolysis in vitro

Sub-stoichiometric CB 2782 and CB 2782-PEG specifically cleave C3 at a single site into inactive fragments

CB 2782-PEG retains full activity and is highly pure (>95%)

Lane	Sample		
1	Ladder		
2	CB 2782-PEG		
3	CB 2782		
4	Ladder		

CB 2782-PEG has ~2x increased half-life in rabbits

Rabbit IVT Pharmacokinetics

ameter	CB 2782-PEG	CB 2782	Aflibercept
terminal (d)	3.85	1.90	4.82
residence ne (d)	5.63	3.21	7.24
ax (µM)	1.52	0.90	1.52
ax (d)	1	1	1
C 0-inf M-d)	7.79	3.14	9.66
IC 0-t M-d)	7.07	3.12	8.06

CB 2782-PEG eliminates vitreous C3 in NHPs

Intravitreal CB 2782-PEG has a half-life of 3.7 days and eliminates at least 99% of C3 in vitreous humor of African green monkeys for at least 28 days

catalystbiosciences.com

BIOSCIENCES

Parameter	CB 2782-PEG		
alf-terminal (d)	3.7		
residence time (d)	3.37		
Cmax (µM)	0.90		
Tmax (d)	1		
AUC 0-inf (µM-d)	6.94		
AUC 0-t (µM-d)	6.92		

Predicted 2.0 mg human dose three to four times a year

Enzyme Model: Fit to observed primate PK/PD data and scaled to the human condition

catalystbiosciences.com

meter	African Green Monkey		Human	
	Value	Source	Value	Source
e (mL)	3.0	Measured	4.4	Literature
Conc	5.0	Measured	70	Literature
f-Life (d)	4.4	Literature	8.2	Literature
ng)	0.125	Known	2.0	Known
e (d)	3.7	Measured	8.5	2.3X scaling from AGM to human
(nM ⁻¹ d ⁻¹)	1.88	Fit	1.88	AGM Model

Summary & conclusions

Engineered novel specificity through molecular evolution and rational design

Significantly improved catalysis and stability in a biological milieu

Intravitreal injection resulted in at least 99% elimination of C3 for at least 28 days in monkeys that translates to >90 days in humans

CB 2782-PEG has potential for best-in-class efficacy and convenience in dry AMD

catalystbiosciences.com

Acknowledgements

Ed Madison Vanessa Soros Mikhail Popkov Chris Thanos Hoa Ly Grant Blouse Natacha LeMoan And Many Others

MOSAIC BIOSCIENCES

Eric Furfine Marty Stanton Matt Traylor

